

Dual Channel, High Speed Optocouplers

Technical Data

HCPL-2530	HCPL-0530
HCPL-2531	HCPL-0531
HCPL-4534	HCPL-0534

These dual channel optocouplers

diodes and integrated photodetec-

contain a pair of light emitting

tors with electrical insulation between input and output.

Separate connection for the

photodiode bias and output

transistor collectors increase the

speed up to a hundred times that

of a conventional phototransistor

coupler by reducing the base-

collector capacitance.

Description

Features

- 15 kV/ μ s Minimum Common Mode Transient Immunity at V_{CM} = 1500 V (HCPL-4534/0534)
- High Speed: 1 Mb/s
- TTL Compatible
- Available in 8 Pin DIP, SO-8, and 8 Pin DIP – Gull Wing Surface Mount (Option 020) Packages
- High Density Packaging
- 3 MHz Bandwidth
- Open Collector Outputs
- Guaranteed Performance from 0°C to 70°C
- Safety Approval UL Recognized – 2500 V rms for 1 minute (5000 V rms for 1 minute for Option 020) per UL1577 CSA Approved
- Single Channel Version Available (4502/3, 0452/3)
- MIL-STD-1772 Version Available (55XX/65XX/4N55)

Applications

- Line Receivers High Common Mode Transient Immunity (>1000 V/µs) and Low Input-Output Capacitance (0.6 pF)
- High Speed Logic Ground Isolation – TTL/TTL, TTL/ LTTL, TTL/CMOS, TTL/LSTTL
- **Replace Pulse Transformers** – Save Board Space and Weight
- Analog Signal Ground Isolation – Integrated Photon Detector Provides Improved Linearity over Phototransistor Type
- Polarity Sensing
- Isolated Analog Amplifier Dual Channel Packaging Enhances Thermal Tracking

Functional Diagram

TRUTH TABLE (POSITIVE LOGIC) LED V_O ON LOW OFF HIGH

A 0.1 μF bypass capacitor between pins 5 and 8 is recommended.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

These dual channel optocouplers are available in an 8 Pin DIP and in an industry standard SO-8 package. The following is a cross reference table listing the 8 Pin DIP part number and the electrically equivalent SO-8 part number.

SO-8

Package

HCPL-0530

HCPL-0531

HCPL-0534

The SO-8 does not require "through holes" in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

The HCPL-2530/0530 is for use in TTL/CMOS, TTL/LSTTL or wide bandwidth analog applications. Current transfer ratio (CTR) for the HCPL-2530/0530 is 7% minimum at $I_F = 16$ mA.

The HCPL-2531/0531 is designed for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input LED will provide enough output current for 1 TTL load and a 5.6 k Ω pull-up resistor. CTR of the HCPL-2531/0531 is 19% minimum at $I_F = 16$ mA.

The HCPL-4534/0534 is an HCPL-2531/0531 with increased common mode transient immunity of 15,000 V/ μ s minimum at V_{CM} = 1500 V guaranteed.

Selection Guide

8 Pin DIP

HCPL-2530

HCPL-2531

HCPL-4534

Minimum CMR			8-pin DIP	(300 Mil)	Small-Out	line SO-8	Widebody (400 Mil)	Hermetic
dV/dt (V/µs)	V _{СМ} (V)	Current Transfer Ratio (%)	Dual Channel Package	Single Channel Package*	Dual Channel Package	Single Channel Package*	Single Channel Package*	Single and Dual Channel Packages*
1,000	10	7	HCPL-2530	6N135	HCPL-0530	HCPL-0500	HCNW135	
		19	HCPL-2531	6N136 HCPL-4502	HCPL-0531	HCPL-0501 HCPL-0452	HCNW136 HCNW4502	
15,000	1500	19	HCPL-4534	HCPL-4503	HCPL-0534	HCPL-0453	HCNW4503	
1,000	10	9						HCPL-55XX HCPL-65XX 4N55

*Technical data for these products are on separate Agilent publications.

Ordering Information

Specify Part Number followed by Option Number (if desired).

Example: HCPL-2531#XXX 020 = UL 5000 V rms/1 Minute Option* 300 = Gull Wing Surface Mount Option† 500 = Tape and Reel Packaging Option

Option data sheets available. Contact your Agilent sales representative or authorized distributor for information.

*For HCPL-2530/1 and HCPL-4534 only. †Gull wing surface mount option applies to through hole parts only.

Schematic

Package Outline Drawings

8-Pin DIP Package (HCPL-2530/2531/4534)

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2530/2531/4534)

Small Outline SO-8 Package (HCPL-0530/0531/0534)

Solder Reflow Temperature Profile (HCPL-0530/0531/0534 and Gull Wing Surface Mount Option Parts)

Note: Use of nonchlorine activiated fluxes is highly recommended.

 \mathbf{UL}

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations: Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice #5, File CA 88324.

Parameter	Symbol	8-Pin DIP (300 Mil) Value	SO-8 Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	mm	Measured from input terminals to output to to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

Insulation and Safety Related Specifications

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

Absolute Maximum Ratings

Parameter	Symbol	Device	Min.	Max.	Units	Note
Storage Temperature	T _S		-55	125	°C	
Operating Temperature	TA		-55	100	°C	
Average Forward Input Current (each channel)	I _{F(AVG)}			25	mA	
Peak Forward Input Current (each channel) (50% duty cycle, 1 ms pulse width)	I _{F(PEAK)}			50	mA	
Peak Transient Input Current (each channel) (≤ 1 μs pulse width, 300 pps)	I _{F(TRANS)}			1	А	
Reverse LED Input Voltage (each channel)	VR			5	V	
Input Power Dissipation (each channel)	P _{IN}			45	mW	
Average Output Current (each channel)	I _{O(AVG)}			8	mA	
Peak Output Current	I _{O(PEAK)}			16	mA	
Supply Voltage (Pin 8-5)	V _{CC}		-0.5	30	V	
Output Voltage (Pins 7-5, 6-5)	Vo		-0.5	20	V	
Output Power Dissipation (each channel)	Po			35	mW	13
Lead Solder Temperature (Through-Hole Parts Only)	Tra	8 Pin DIP		260	°C	
1.6 mm below seating plane, 10 seconds Reflow Temperature Profile	T _{LS} T _{RP}	SO-8 and Option 300	260°CSee Package OutlineDrawings section			

Electrical Specifications (DC) Over recommended temperature ($T_A = 0^{\circ}C$ to 70°C) unless otherwise specified. See note 9.

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	HCPL-2530/ 0530	7 5	18	50	%	$\begin{tabular}{ c c c c }\hline $T_A = 25^\circ C$ & $I_F = 16$ r$ \\ $V_{CC} = 4$. \\ $V_O = 0.5$ \\ \hline \end{tabular}$	5V 4	1, 2
		HCPL-2531/ 0531 HCPL-4534/ 0534	19 15	24	50	%	$T_A = 25^{\circ}C$		
Logic Low Output	V _{OL}	HCPL-2530/ 0530		0.1	0.5	V	$\label{eq:Interm} \begin{array}{ c c c c } T_{A} = 25^{\circ} C & I_{O} = 1.1 \text{ mA} & I_{F} = 16 \text{ m} \\ \hline & V_{CC} = 4. \end{array}$	nA, 1 5 V	1
Voltage		HCPL-2531/ 0531 HCPL-4534/		0.1	0.5 0.5 0.5	V	$I_{O} = 0.8 \text{ mA}$ $T_{A} = 25^{\circ}\text{C} I_{O} = 3.0 \text{ mA}$ $I_{O} = 2.4 \text{ mA}$		
Logic High Output Current	I _{OH}	0534		0.003	0.5	μA	$T_{A} = 25^{\circ}C V_{O} = Open \\ V_{CC} = 5.5 \text{ V} \\ V_{O} = Open \\ V_{O} = Open \\ V_{O} = 15 \text{ O V} $	A 6	1
Logic Low Supply Current	I _{CCL}			100	400	μΑ	$V_{CC} = 15.0 \text{ V}$ $I_{F} = 16 \text{ mA, } V_{O} = \text{Open,}$ $V_{CC} = 15 \text{ V}$		
Logic High Supply Current	I _{CCH}			0.05	4	μA	$\begin{split} I_{\rm F} &= 0 \text{ mA, } V_{\rm O} = {\rm Open,} \\ V_{\rm CC} &= 15 \text{ V} \end{split}$		
Input Forward Voltage	V _F			1.5	1.7 1.8	V	$\frac{T_{A} = 25 \text{°C}}{I_{F}} = 16 \text{ mA}$	3	1
Input Reverse Breakdown Voltage	BV _R		5			V	I _R =10 μA		1
Temperature Coefficient of Forward Voltage	$\frac{\Delta V_F}{\Delta T_A}$			-1.6		mV/ °C	$I_F = 16 \text{ mA}$		
Input Capacitance	C _{IN}			60		pF	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$	1	

*All typicals at $T_A = 25$ °C.

Switching Specifications (AC)

		Device							
Parameter	Sym.	HCPL-	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Propagation	t_{PHL}	2530/0530		0.2	1.5	μs	$T_A = 25^{\circ}C$ $R_L = 4.1 \text{ k}\Omega$	5, 9,	6,7
Delay Time					2.0			11	
to Logic Low		2531/0531/		0.2	0.8		$T_A = 25^{\circ}C$ $R_L = 1.9 \text{ k}\Omega$		
at Output		4534/0534			1.0				
Propagation	t _{PLH}	2530/0530		1.3	1.5	μs	$T_A = 25^{\circ}C$ $R_L = 4.1 \text{ k}\Omega$	5, 9,	6, 7
Delay Time					2.0			11	
High to Logic		2531/0531/		0.6	0.8		$T_A = 25^{\circ}C$ $R_L = 1.9 \text{ k}\Omega$		
at Output		4534/0534			1.0				
Common	CM _H	2530/0530	1	10		kV/μs	$R_{\rm L} = 4.1 \text{ k}\Omega \mid I_{\rm F} = 0 \text{ mA},$	10	5, 6,
Mode Transient		2531/0531	1	10			$R_{\rm L} = 1.9 \text{ k}\Omega T_{\rm A} = 25^{\circ}\text{C},$		7
Immunity at		4534/0534	15	30			$R_L = 1.9 \text{ k}\Omega$ $V_{CM} = 10 V_{p-p}$		
Logic High									
Level Output									
Common	CM _L	2530/0530	1	10		kV/μs	$R_{\rm L} = 4.1 \text{ k}\Omega I_{\rm F} = 0 \text{ mA},$	10	5, 6,
Mode Transient		2531/0531	1	10			$R_{\rm L} = 1.9 \text{ k}\Omega T_{\rm A} = 25^{\circ}\text{C},$		7
Immunity at		4534/0534	15	30			$R_L = 1.9 \text{ k}\Omega$ $V_{CM} = 10 V_{p-p}$		
Logic Low									
Level Output									
Bandwidth	BW			3		MHz	$R_L = 100 \text{ k}\Omega$	7,8	

*All typicals at $T_A = 25$ °C.

Package Characteristics

Parameter	Sym.	Device	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Input-Output	V _{ISO}		2500			V rms	RH < 50%,		3, 10
Momentary With-		HCPL-2530/	5000				t = 1 min.,		3, 11
stand Voltage**		2531/4534							
		Option 020							
Resistance	R _{I-O}			1012		Ω	$\rm RH \le 45\%$		3
(Input-Output)							$V_{I-O} = 500 Vdc,$		
							t = 5 s		
Capacitance	C _{I-O}			0.6		$\rm pF$	f = 1 MHz,		12
(Input-Output)							$T_A = 25^{\circ}C$		
Input-Input	I _{I-I}			0.005		μA	$RH \le 45\%$,		4
Insulation							t = 5 s,		
Leakage Current							$V_{I-I} = 500 \text{ Vdc}$		
Resistance	R _{I-I}			1011		Ω			4
(Input-Input)									
Capacitance	C _{I-I}	HCPL-2530/		0.03		pF	f = 1 MHz		4
(Input-Input)		2531/4534							
		HCPL-0530/		0.25					
		0531/0534							

*All typicals at $T_A = 25$ °C. **The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.

Notes:

- 1. Each channel.
- 2. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_O , to the forward LED input current, I_F , times 100%.
- 3. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
- 4. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
- 5. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e.,

 $V_{\rm O} > 2.0$ V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $V_{\rm O} < 0.8$ V).

- 6. The 1.9 k load represents 1 TTL unit load of 1.6 mA and the 5.6 k pull-up resistor.
- 7. The 4.1 k load represents 1 LSTTL unit load of 0.36 mA and the 6.1 k pull-up resistor.
- 8. The frequency at which the ac output voltage is 3 dB below the low frequency asymptote.
- 9. Use of a 0.1 μF bypass capacitor connected between pins 5 and 8 is recommended.

- In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second (leakage detection current limit, I_{I-Ω} ≤ 5 μA).
- 11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (leakage detection current limit, I_{LO} ≤ 5 μA).
- 12. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together.
- 13. Derate linearly above 90°C free-air temperature at a rate of 3.0 mW/°C for the SOIC-8 package.

Figure 1. DC and Pulsed Transfer Characteristics.

Figure 2. Current Transfer Ratio vs. Input Current.

Figure 3. Input Current vs. Forward Voltage.

Figure 4. Current Transfer Ratio vs. Temperature.

Figure 5. Propagation Delay vs. Temperature.

Figure 6. Logic High Output Current vs. Temperature.

Figure 7. Small-Signal Current Transfer Ratio vs. Quiescent Input Current.

Figure 8. Frequency Response.

Figure 9. Switching Test Circuit.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

Figure 11. Propagation Delay Time vs. Load Resistance.

Agilent Technologies

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies Obsoletes 5966-1272E 5968-1090E (11/99)